69 research outputs found

    On the number of distinct block sizes in partitions of a set

    Get PDF
    AbstractThe average number of distinct block sizes in a partition of a set of n elements is asymptotic to e log n as n → ∞. In addition, almost all partitions have approximately e log n distinct block sizes. This is in striking contrast to the fact that the average total number of blocks in a partition is ∼n(log n)−1 as n → ∞

    Zeta Function Zeros, Powers of Primes, and Quantum Chaos

    Full text link
    We present a numerical study of Riemann's formula for the oscillating part of the density of the primes and their powers. The formula is comprised of an infinite series of oscillatory terms, one for each zero of the zeta function on the critical line and was derived by Riemann in his paper on primes assuming the Riemann hypothesis. We show that high resolution spectral lines can be generated by the truncated series at all powers of primes and demonstrate explicitly that the relative line intensities are correct. We then derive a Gaussian sum rule for Riemann's formula. This is used to analyze the numerical convergence of the truncated series. The connections to quantum chaos and semiclassical physics are discussed

    On some problems involving Hardy's function

    Full text link
    Some problems involving the classical Hardy function Z(t):=ζ(1/2+it)(χ(1/2+it))−1/2,ζ(s)=χ(s)ζ(1−s) Z(t) := \zeta(1/2+it)\bigl(\chi(1/2+it)\bigr)^{-1/2}, \quad \zeta(s) = \chi(s)\zeta(1-s) are discussed. In particular we discuss the odd moments of Z(t)Z(t), the distribution of its positive and negative values and the primitive of Z(t)Z(t). Some analogous problems for the mean square of ∣ζ(1/2+it)∣|\zeta(1/2+it)| are also discussed.Comment: 15 page

    Certified Exact Transcendental Real Number Computation in Coq

    Get PDF
    Reasoning about real number expressions in a proof assistant is challenging. Several problems in theorem proving can be solved by using exact real number computation. I have implemented a library for reasoning and computing with complete metric spaces in the Coq proof assistant and used this library to build a constructive real number implementation including elementary real number functions and proofs of correctness. Using this library, I have created a tactic that automatically proves strict inequalities over closed elementary real number expressions by computation.Comment: This paper is to be part of the proceedings of the 21st International Conference on Theorem Proving in Higher Order Logics (TPHOLs 2008

    Large N expansion of the 2-matrix model

    Get PDF
    We present a method, based on loop equations, to compute recursively all the terms in the large NN topological expansion of the free energy for the 2-hermitian matrix model. We illustrate the method by computing the first subleading term, i.e. the free energy of a statistical physics model on a discretized torus.Comment: 41 pages, 9 figures eps

    Hard Instances of the Constrained Discrete Logarithm Problem

    Full text link
    The discrete logarithm problem (DLP) generalizes to the constrained DLP, where the secret exponent xx belongs to a set known to the attacker. The complexity of generic algorithms for solving the constrained DLP depends on the choice of the set. Motivated by cryptographic applications, we study sets with succinct representation for which the constrained DLP is hard. We draw on earlier results due to Erd\"os et al. and Schnorr, develop geometric tools such as generalized Menelaus' theorem for proving lower bounds on the complexity of the constrained DLP, and construct sets with succinct representation with provable non-trivial lower bounds

    Accuracy and Stability of Computing High-Order Derivatives of Analytic Functions by Cauchy Integrals

    Full text link
    High-order derivatives of analytic functions are expressible as Cauchy integrals over circular contours, which can very effectively be approximated, e.g., by trapezoidal sums. Whereas analytically each radius r up to the radius of convergence is equal, numerical stability strongly depends on r. We give a comprehensive study of this effect; in particular we show that there is a unique radius that minimizes the loss of accuracy caused by round-off errors. For large classes of functions, though not for all, this radius actually gives about full accuracy; a remarkable fact that we explain by the theory of Hardy spaces, by the Wiman-Valiron and Levin-Pfluger theory of entire functions, and by the saddle-point method of asymptotic analysis. Many examples and non-trivial applications are discussed in detail.Comment: Version 4 has some references and a discussion of other quadrature rules added; 57 pages, 7 figures, 6 tables; to appear in Found. Comput. Mat

    The strong thirteen spheres problem

    Full text link
    The thirteen spheres problem is asking if 13 equal size nonoverlapping spheres in three dimensions can touch another sphere of the same size. This problem was the subject of the famous discussion between Isaac Newton and David Gregory in 1694. The problem was solved by Schutte and van der Waerden only in 1953. A natural extension of this problem is the strong thirteen spheres problem (or the Tammes problem for 13 points) which asks to find an arrangement and the maximum radius of 13 equal size nonoverlapping spheres touching the unit sphere. In the paper we give a solution of this long-standing open problem in geometry. Our computer-assisted proof is based on a enumeration of the so-called irreducible graphs.Comment: Modified lemma 2, 16 pages, 12 figures. Uploaded program packag
    • …
    corecore